ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • 열교 차단
    Construction Info/단열 및 결로 2010. 11. 9. 17:39

    열교(Heat Bridge)란 건축물의 어느 한 부분의 단열이 약화되거나 끊김으로 인해 외기가 실내로 들어오는 것을 의미한다.

    단열의 방식은 내단열, 중단열, 외단열 등으로 구분할 수 있으나, 열교 현상을 최대한 억제하는 방법은 외단열의 채택이다.

     

    내단열은 대부분 특정한 부분의 열교 현상을 피할 수 없는 부분이 불가피하게 발생하고, 구조체를 축열체로 사용할 수 없기 때문이다. 중단열은 디테일 구성 방법에 따라 외단열만큼은 아니라도 어느 정도 열교를 차단할 수 있을 것으로 보인다.

    아래는 내단열과 외단열을 시뮬레이션한 결과이다. 그림만으로도 외단열이 얼마나 안정적인가를 알 수 있다.

     

    조건은

    구조체 : 콘트리트

    외기: -5℃, 내부 20℃

    단열재 : 비드법1호 75mm

    내부 : 9.5t 석고보드 두겹

    사용프로그램 : Therm 6.0으로 한 것이다.

     

    외기를 -5℃ 로 한 것은 DIN 규정에 의하면 외기 -5℃일 때, 내부 벽의 표면온도가 12.6℃ 이하로 떨어지면 안된다는 규정때문이다. 그 이하로 떨어지면 내부에 결로로 인한 위험이 존재하기 때문이다.

    그림의 노란색라인이 약 12.6℃의 라인이다.

    <내단열 시뮬레이션>

     

    <외단열 시뮬레이션>

     

     

     

    열교에 관하여서는 인터넷에서도 많은 글을 만날 수 있으므로 특별히 언급을 길게 할 필요는 없을 듯 하다. 단열을 아무리 두껍게 해도 열교부위가 많으면 아무 소용이 없게 되고, 오히려 아이러니하게도 단열이 강화될수록 열교는 큰 문제가 될 수 있다.

     

    겨울에 실내에 발생하는 벽면 곰팡이발생의 원인인 결로(이슬맺힘)현상은 단열을 강화하면 줄어드는데, 결로가 준다고 해서 실내습기가 어디 가는 것이 아니므로 단열이 강화된 실내에 열교부위가 있다면 그 곳이 습기의 주 공격 대상이 되어서 부분적 결로가 더 심하게 된다. 물론 에너지손실도 막대함은 물론이다. 현재 우리나라의 공동주택의 경우는 내단열을 사용하게 됨으로써 필연적으로 열교를 피할 수 없게 된다. 실제로 우리나라 공동주택을 리모델링하려고 내단열재를 뜯었을 때 단열재와 구조체 사이에 무수히 많게 곰팡이가 핀 것을 어렵지 않게 볼 수 있다.

     

    그러한 이유로 패시브하우스에서는 열교부위를 막기 위한 디테일을 무엇보다 중요하게 생각할 수밖에 없다.

     

     

    대개의 경우 내단열만 열교가 문제가 되는 것처럼 이야기를 하는데 불행하게도 외단열도 열교로부터 완전히 자유롭지는 못하다. 아래 그림은 내단열과 외단열 공히 대표적인 열교부위를 나타낸 것이다.

     

     


    내단열의 경우 슬라브와 슬라브 사이의 열교를 피할 수가 없게 되므로 주의하여야 한다. 아래의 그림은 공동주택의 층간과 발코니 열교부위를 나타낸 것이다.

     

    <출처 : 건물에너지 사용실태와 문제점 - 이화여대 송승영교수>

     

    열교의 차단방법은 여러 가지가 있고 이미 인터넷에서도 쉽게 그 방법을 찾을 수 있으므로 자세한 설명은 생략하고, 옆사진은 주택에서의 결로부위와 그로 인해 발생한 곰팡이균의 사진이다.  우리나라 주택은 대부분 천장이 있기 때문에 천장속의 모습을 잘 알지 못한다. 보이는 천정이 깨끗하다고 사진의 모습이 남의 이야기가 아닌 것이다.

    <출처 : BINE informationsdienst>

     

     

    또한 위의 사진처럼 동일한 단열은 하더라도 모서리에 결로가 몰리는 이유는 바로 기하학적 열교 탓이다.

    즉, 벽면은 외기와 내부가 1:1로 대응을 하지만, 모서리 부분은 외기와 내부가 2:1 혹은 3면이 만나는 부위는 3:1까지 대응이 되므로, 열손실이 더 많아 지게 되어 겨울철에 온도가 주변보다 더 떨어지게 된다. 이러한 현상을 기하학적 열교라고 한다.

    이런 기하학적 열교 때문에 구석에 특히 곰팡이가 피는 것이다.

       

     

     


    그러므로 모서리는 특히 단열이 반드시 연속되도록 처리를 하여야 하며, 단열재와 단열재사이의 틈도 생기지 않도록 주의를 기울여야 한다. 또한 발코니의 열교를 막기위해 최근 국내에 아래와 같은 제품도 수입되고 있다. 열교차단재 사이에 철근을 넣어 시공하여 켄틸레버 발코니의 열교를 차단하는 제품이다. 국산이 아닌게 아쉬울 뿐이다.

     

     
     

     

    또한 외장 마감재의 선택에 따라 부분적 열교가 발생할 수 있다.

    아래의 시뮬레이션 그림을 보면 석재 마감을 위해 단열재 사이에 브라켓을 달았을 경우 안정적인 외단열이 얼만큼 열적으로  요동칠 수 있는 가를 보여주고 있다. (특히 모서리부분은 아주 취약해진다)

     

    그러므로 패시브건축물은 가급적 단열재가 온전히 이어질 수 있도록 부속철물이 최소화되거나 철물이 아예 필요없는 외장재를 선택하는 것이다.

     

    물론 에너지성능이 높은 업무용건물이나, 저에너지건축물을 만드는데 있어서 외장재까지를 가혹하게 제한한다면 외장재에서 선택할 수 있는 것이 거의 없어지게 된다. 그러므로 이를 결코 강제할 수도 없고, 그렇게 될 수도 없는 노릇이다.

     

    다만 1.5리터 패시브하우스(주거시설)를 목표로 한다면 이러한 열교는 문제가 될 수 있다. 패시브하우스에 대해 선형열교에 대한 제한규정은 있지만 설계를 하는데 있어서 일일이 다 시뮬레이션과 계산을 병행할 수도 없기 때문에 재료의 선택에 있어서 제한을 둘 수밖에 없는 것이다.

     

    시뮬레이션 조건은

    구조체 : 콘트리트

    외기: -5℃, 내부 20℃

    단열재 : 비드법1호 75mm

    내부 : 9.5t 석고보드 두겹

    사용프로그램 : Therm 6.0 (이차원 해석이라 철재브라켓 깊이에 대한 입력치가 없어 해석결과는 실제보다 과장될 가능성이 있음)

     

    건강한 주택은 뜬구름 잡는 말로 이루어지는 것이 아니다. 더욱이 패시브하우스는 기초적 지식으로 이루어진 세밀한 계획과 그 실천방안이 수립되어야 실현될 수 있다.

     

    -------------------------------------------------------------------------

    건축가 홍도영님과 하단 댓글로 오고간 내용을 조금 더 알기 쉽게 올립니다.

     

    실내습기가 특정 온도의 물체와 만나면 물로 변하는데 (결로현상), 결로가 발생하는 온도보다 건축물에서 특히 주거시설에서 더 중요한 포인트는 결로이전에 곰팡이가 먼저 발생할 수 있다는 점이고, 이를 독일에서 정리한 것이 DIN 4108-2에 DIN EN 13788 이다.

     

    아래 그림으로 이해를 하면 빠를 듯 하다.

     

     

    실내의 온도가 20℃, 상대습도가 50%일 때, 즉 그림에서 상대습도 50%의 파란색 라인과 20℃에서 출발한 직선 "C라인"이 만나는 점에서 왼쪽으로 수평이동을 하면 상대습도 80%인 하늘색선과 만나게 되는데.. 이 만나는 점에서 아래로 내려와서 읽혀지는 온도("B")인 12.6℃가 곰팡이 발생온도이다.

     

    우리는 지금까지 대부분 결로발생온도만 신경써왔던 것이 사실이다. 결로발생온도는 앞서의 수평선을 더 왼쪽으로 진행하면 상대습도 100%인 노란선과 만나게 되는데.. 이 만나는 점의 아래 온도("A")를 노점온도(결로발생온도)이다.

     

    그러나, 아래의 대화를 보면 알 수 있듯이 결로이전에 곰팡이가 먼저 발생을 하며, 그 시점이 물체표면의 상대습도가 80%가 되는 온도인 것이다. 그러므로 우리가 이제껏 이야기했던 결로발생온도 보다 더 높은 온도로 실내측 표면온도를 관리해 주어야 하는 이유인 것이다.

     

    홍도영 : 바꾸어 이야기를 하면 결로가 생겼다면 이미 곰팡이는 발생한 후라는 이야기이다

    "외기를 -5℃ 로 한 것은 DIN 규정에 의하면 외기 -5℃일 때, 내부 벽의 표면온도가 12.6℃ 이하로 떨어지면 안된다는 규정때문이다. 그 이하로 떨어지면 내부에 결로로 인한 위험이 존재하기 때문이다. 그림의 노란색라인이 약 12.6℃의 라인이다." 여기서 12,6도는 DIN 4108-2에 DIN EN 13788의 곰팡이 기준인 상대습도 80%를 고려 했을때의 표면온도로 표면의 결로가 아닌 곰팡이의 발생온도라 고 보는 것이 맞습니다. 표면에 결로수가 생기는 온도는 12,6도가 아니라 위의 기준을 근거로 하면 약 9,3도라 봅니다. 결로수가 없어도 곰팡이가 생기는 온도를 계산한 것이지요. 결로수와 곰팡이 발생은 서로 관련이 있지만 곰팡이는 결로수가 없어도 발생을 합니다.

    그래서 공식의 기본기준인 실내의 온도가 20도(기준온도)이고 상대습도가 50%(기준습도)에서 선을 왼쪽으로 그려보면 상대습도가 80%가 되는 선과 만나는 것이 바로 표면의 온도(12,6도)이고 표면의 상대습도가 되는 것이지 실내의 상대습도가 말하는 것이 아닙니다. 그 선을 계속해서 100%로가 되는 즉, 노점온도가 되는 부위까지 연장하면 표면은 100%이고 표면온도는 약 9,3도가 되는 것이지요. 그런 이유에서 곰팡이 발생은 65% 상대습도도 있으나 주로 80%에서 발생을 한다고 보기에 곰팡이 발생온도는 12,6도 노점온도는 9,3도가 되는것입니다. 그런이유에서 차후 글래저 공식을 사용한 경우는 표면열저항도 높이에 따라 다르게 적용하는 것이 좋지만 9,3도를 경계로 보지 않고 12,6도를 보는것이 더 효과적이지만 3개의 구조체가 만나는 부위는 12,6도를 2차원적으로 만족한다 하더라도 실제적으로는 그 이하가 되기에 안전하다고 볼수가 없으며 이런 경우는 3D로 열교를 계산해야 한다고 봅니다. 물론, 외단열은 그리 큰 문제가 없지만 내단열의 경우는 100% 적용이 되는 말이지요

    부연설명을 드리자면 실내의 상대습도와 온도는 말씀하신 그대로 20도에 50%가 맞습니다. 단, 구조체의 표면온도에 따라 표면의 상대습도만이 변화하는 것으로 보면 됩니다. 표면열저항 얘기를 했는데 특히 가구나 바닥까지 내려오는 커텐등이 있는 경우는 국내에서 규정하고 있는 실내의 표면 열저항을 그대로 계산하면 내단열의 경우는 100% 하자로 이어지는 경우가 많기에 그런 경우는 표면열저항을 높이에 따라 상중하 그리고 바닥에 다리가 없는 가구이냐 아니면 커텐의 유무에 따라 다르게 적용이 되면 위험요소가 줄어들지요. 그러나 내단열은 어차피 그렇게 게산해도 문제의 소지는 항상 남아 있기에 이런 이유에서 외단열로 가야지요. 스위스의 경우에는 서로 다른 표면열저항을 적용을 시키지만 독일의 경우는 아직 의무사항은 아니고 검토 및 권장사항에 들어갑니다.
    추가를 합니다. 표면온도 12,6도를 위한(곰팡이 발생여부) DIN에 따른 표면 열저항은 0,25 (글래저 공식에서는 0,13 정도가 되지요. 주변주건이 다릅니다.)m²K/W (난방이 되는 공간) 0,17 m²K/W (난방이 되지 않는 공간) 외부표면 열저항는 0,04 m²K/W로 봅니다. 그러나 붙박이 가구가 설치된 경우는 1,0 m²K/W, 일반 장농은 0,5 m²K/W이며 커텐은 0,25 m²K/W 계산하기를 권장합니다. 스위스는 높이에도 차이를 두는데 그 수치는 다음에 올리지요. 그리고 표면온도9,3도에 언급은 DIN 4108-3 Tab. A.4에 나옵니다.

     

    관리자 : 장문의 설명 감사합니다.
    건축가 홍도영씨가 위에 적으신 글을 보시는 분이 좀 더 쉽게 아실 수 있도록 이 글의 본문에 그림과 같이 설명을 첨부토록 하겠습니다.
    가장 아래의 표면열저항에 대한 설명은 아마도 대다수의 분들이 이해하시기 어려우실 꺼라 판단되고, 본문의 주제와는 또 다른 하나의 섹션이 될 수 있는 내용이라 국내 기준과 더불어 새로운 글로 올리도록 하겠습니다. 저희가 스위스의 높이에 따른 표면열저항 자료는 가지고 있지 못하므로 홍도영님께서는 새글이 올라오면 그 글에 첨부하여 주시면 보시는 분들이 편하실 듯 합니다.
    고맙습니다.

     

     

    출처 : 한국패시브건축협회 http://phiko.kr/index.php?mm_code=147&sm_code=179

    'Construction Info > 단열 및 결로' 카테고리의 다른 글

    단열 지침서  (0) 2010.07.01
    단열 및 결로방지 계획-2  (0) 2010.06.16
    단열 및 결로방지 계획-1  (0) 2010.06.16
Designed by Tistory.